Nature of the transition in non-linear spin-S Ising models (integer spin)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9 L31
(http://iopscience.iop.org/0305-4470/9/4/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:16

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Nature of the transition in non-linear spin-S Ising models (integer spin)

R I Joseph
Department of Electrical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA

Received 17 February 1976

Abstract

We consider the spin- S Hamiltonian

$$
-\beta \mathscr{H}=K \sum_{\langle i, j\rangle} Q_{S}\left(S_{i}\right) Q_{S}\left(S_{j}\right)+\Lambda \sum_{k} Q_{S}\left(S_{k}\right)
$$

where $Q_{S}(y)$ is the polynomial in y of degree $2 S$ whose eigenvalues are ± 1. Denoting the partition function by $Z_{S}(K, \Lambda)$, it is shown rigorously that

$$
Z_{S}(K, \Lambda)=[S(S+1)]^{\frac{1}{2} N} Z_{\frac{1}{2}}(K, \Lambda+C), \quad 2 C=\ln \left(1+S^{-1}\right)
$$

for all integer values of S.

Recently (Joseph 1976a) we considered the spin-S Hamiltonian

$$
\begin{equation*}
\mathscr{H}=-J \sum_{\langle i, j\rangle} Q_{S}\left(S_{i}\right) Q_{S}\left(S_{j}\right)-\lambda \sum_{k=1}^{N} Q_{S}\left(S_{k}\right) \tag{1}
\end{equation*}
$$

where $Q_{S}(y) \dagger$ is the polynomial in y of degree $2 S$ whose eigenvalues are just ± 1, and proved for all half-integer values of S that the partition function $Z_{S}(K, \Lambda), K=\beta J, \Lambda=$ $\beta \lambda$, differed from that for $S=\frac{1}{2}$ by a simple multiplicative constant. Comparing the structure of the interaction operator $Q_{S}\left(S_{i}\right) Q_{S}\left(S_{j}\right)$ (Joseph 1976b) to that appropriate to the $(2 S+1)$-component Potts model, $\delta_{s_{i} S_{i}}$ (Joseph and Kim 1974), we concluded that the relative changes in terms from the later to the former was sufficient for half-integer values of S to change any discontinuous transition found for the Potts model (Baxter 1973, Kim and Joseph 1975) into a continuous one. In the present Letter we consider the case of integer values of S and show that $Z_{S}(K, \Lambda) \propto Z_{\frac{1}{2}}(K, \Lambda+C)$ where $C=$ $\ln \left[1+S^{-1}\right]^{1 / 2}$. Hence, for $\Lambda=0$, the $Q Q$ model is equivalent to a spin $-\frac{1}{2}$ Ising model in a temperature-dependent 'field' and has no transition at all + . The relevance of this result to the Potts model can be appreciated by comparing the forms of the Hamiltonians; for $S=1$ for example

$$
\begin{align*}
& \mathscr{H}_{i j}^{(O Q)}=4 S_{i}^{2} S_{j}^{2}-2\left(S_{i}^{2}+S_{j}^{2}\right)+1, \\
& 2 \mathscr{H}_{i j}^{(\text {Potss })}-1=S_{i} S_{j}+3 S_{i}^{2} S_{j}^{2}-2\left(S_{i}^{2}+S_{j}^{2}\right)+1 . \tag{2}
\end{align*}
$$

Hence a change in the numerical values of the terms in $H_{i j}^{(\text {Pots })}$ to those of $H_{i j}^{(O)}$ is

[^0]sufficient to destroy any transition that occurs in the Potts model (Baxter 1973, Kim and Joseph 1975).

Consider then the Hamiltonian given in equation (1). Since the eigenvalues of $Q_{S}\left(S_{i}\right)$ are just $(-1)^{2 S+n_{i}-1}$ (Joseph 1976 b$), n=1,2, \ldots, 2 S+1$, the partition function can be written in the form
$Z_{S}(K, \Lambda)=(\cosh K)^{\Phi} \operatorname{Tr} \prod_{\langle i, j\rangle}\left[1+v(-1)^{n_{i}+n_{j}} \prod_{k} \exp \left[\Lambda(-1)^{2 S+n_{k}-1}\right]\right.$
where $\mathscr{P}=\frac{1}{2} N z, v=\tanh K, z$ being the lattice coordination number. It is convenient at this point to introduce the quantities
$A_{S}=\sum_{n=1}^{2 S+1} \exp \left[\Lambda(-1)^{2 S+n-1}\right]=\left\{\begin{array}{l}(2 S+1) \cosh \Lambda, \\ 2[S(S+1)]^{1 / 2} \cosh (\Lambda+C),\end{array}\right.$
half-integer S
integer S
and

$$
B_{S} \equiv \sum_{n=1}^{2 S+1}(-1)^{n} \exp \left[\Lambda(-1)^{2 S+n-1}\right]= \begin{cases}(2 S+1) \sinh \Lambda, & \text { half-integer } S \\ -2\left[S(S+1]^{1 / 2} \sinh (\Lambda+C),\right. & \text { integer } S\end{cases}
$$

where $C \equiv \frac{1}{2} \ln \left(1+S^{-1}\right)$. The factor multiplying $(\cosh K)^{\text {P }}$ on the right-hand side of equation (3) can be considered as a power series in v. In this expansion, the first term is just A_{s}^{N} and each l line graph which can be drawn on a lattice contributes to the l th power of v with a factor determined by the topology of the graph. Each graph of k vertices, m of which are odd (that is, has an odd number of lines meeting at this point), contributes a factor $A_{s}^{N-k} B_{s}^{m} A_{s}^{k-m}=A_{s}^{N}\left[B_{s} / A_{s}\right]^{m} ; m$ is always zero or an even integer, Factoring out the term $A_{s}^{N}, Z_{S}(K, \Lambda)$ is then of the form

$$
\begin{equation*}
Z_{S}(K, \Lambda)=(\cosh K)^{\mathscr{P}} A_{S}^{N_{\mathscr{L}}}\left(v,\left|B_{S} / A_{S}\right|\right) \tag{6}
\end{equation*}
$$

the only S-dependence in \mathscr{Z} occurs by virtue of the quantity B_{S} / A_{s}. For S a half-integer, equation (6) becomes on using equations (4) and (5),

$$
\begin{equation*}
Z_{S}(K, \Lambda)=\left(S+\frac{1}{2}\right)^{N}(\cosh K)^{\Phi}[2 \cosh \Lambda]^{N} \mathscr{P}(v,|\tanh \Lambda|)=\left(S+\frac{1}{2}\right)^{N} Z_{1 / 2}(K, \Lambda), \tag{7}
\end{equation*}
$$

in agreement with Joseph (1976a). For S an integer, we get similarly

$$
\begin{align*}
Z_{s}(K, \Lambda)= & {[S(S+1)]^{\frac{1}{2} N}(\cosh K)^{\Phi}[2 \cosh (\Lambda+C)]^{N_{\mathscr{D}}}(v,|\tanh (\Lambda+C)|) } \\
& =[S(S+1)]^{\frac{1}{N}} Z_{1 / 2}(K, \Lambda+C) . \tag{8}
\end{align*}
$$

Note that for $S \rightarrow \infty, C \rightarrow 0$ and $Z_{S}(K, \Lambda) \rightarrow Z_{1 / 2}(K, \Lambda)$.

References

[^1]
[^0]: $\dagger Q_{1 / 2}(y)=2 y, Q_{1}(y)=2 y^{2}-1, Q_{3 / 2}(y)=\frac{4}{3} y^{3}-\frac{7}{3} y, Q_{2}(y)=\frac{2}{3} y^{4}-\frac{8}{3} y^{2}+1, \ldots$.
 \ddagger If $0<-\lambda<k T_{c} C$, there is a discontinuous transition at $k T=-\lambda / C ; T_{c}$ is the transition temperature for
 $S=\frac{1}{2}$. If $-\lambda=k T_{c} / C$, the transition is a continuous one at T_{c}. These results apply in both two and three dimensions.

[^1]: Baxter R J 1973 J. Phys. C: Solid St. Phys. 6 L445-8
 Joseph R I 1976a Phys. Lett. A in the press
 -_ 1976b Phys. Rev. B in the press
 Joseph R I and Kim D 1974 Phys. Lett. 47A 115-6
 Kim D and Joseph R I 1975 J. Phys. A: Math. Gen. 8 891-912

